
Test Questions for

Concurrent and Distributed Systems 2005

Mid-Semester Quiz

☞

 to all students of ANU/FEIT/DCS/COMP2310

General

The questions below do not cover the whole of the ma-
terial of the course up to the mid-semester break, but
are meant to give you feedback about your perform-
ance. Do this quiz as soon as you can – do not put it on
the stack until just before the final exam (it

will

 be too
late to catch up then). If you can go through all of those
questions and can answer them based on a solid un-
derstanding of the material, you are on the right track,
and should keep going. If you are hesitant or even lost
with some of those questions: start reading again (your
lecture notes (it should be all there), and the text
books), talk with your fellow students (maybe you
missed just the lecture, when this material was pre-
sented), talk with the tutors, or talk to one of the lectur-
ers of the course, until you gained enough confidence.
To make sure that your confidence is not an illusion:
exchange your answers with your fellow students, and
post critical ones to the phorum (but please only criti-
cal ones). It still doesn’t necessarily mean that the an-
swers are correct, but we will interfere on the phorum,
if you’re thinking in a wrong direction. We will re-
spond to your questions and postings (if we have the
impression that you worked through the material in the
first place), but we will not supply an example solu-
tion. Some questions don’t have a single, unique an-
swer, but are meant to make you think for a little while.

1. Basic Concurrency

(1)

When does concurrency

not

 make sense?

(2)

Specify a process

(3)

Specify a thread

(4)

What are the differences between a user-level
thread and a kernel-level-thread

(5)

Could you sketch all possible process states and
their transitions?

(6)

Which programming paradigms are more suitable
for concurrent systems, which are less suitable?
Which are intrinsically concurrent?

2. Mutual Exclusion

(7)

When do you need mutual exclusion?

(8)

What are the minimal requirements to be able to
implement mutual exclusion between two tasks? /
more than two tasks?

(9)

The most simple algorithms implementing mutual
exclusion between two tasks are Decker’s and Pe-
terson’s algorithm. Describe both of them and de-
termine what the do differently, but still achieving
the same goal.

(10)

Specify a semaphore.

(11)

Is a binary semaphore sufficient to implement all
forms of semaphores? / all forms condition synchro-
nization? Why?

(12)

Give examples of specific, realistic hardware-sup-
port in the implementation mutual exclusion.

(13)

Sketch a simple method to implement mutual ex-
clusion between two tasks based on atomic access
to shared variables / or based on semaphores.

(14)

What is the difference between starvation and a
livelock?

3. Condition Synchronization

(15)

When would you chose which kind of synchroniza-
tion method (assuming you have a free choice in
your specific development environment)? Give rea-
sons.

(16)

Which potential problem arises, when you try to
suspend a process on a condition variable inside a
monitor routine? How could you solve this prob-
lem?

(17)

Does it makes sense, or is it even necessary to re-
lease multiple processes, which are waiting at a
condition variable at once, when some other proc-
ess signals this condition.

(18)

Are there any differences between a semaphore and
a condition variable?

(19)

Can you call another monitor-routine from within a
monitor-routine?

(20)

Why are multiple processes allowed at once inside
a protected function?

(21)

Can you emulate synchronous message passing by
asynchronous message passing? If so: how close
can such an emulation come?

Chapter: Non-Determinism 2

4. Non-Determinism

(22)

If you have a client-server system at hand, where
the server uses a non-deterministic select statement
to offer several different services to the clients and
you would like to change this part of the server into
a deterministic program: what would you need to
change? - and can you do this without losing any
functionality?

5. Scheduling

(23)

Which scheduling scheme (or combinations of
them) would you prefer to have on your own com-
puter? Give reasons.

(24)

Assuming that you have only one processor in your
system, and one of the user-tasks is currently exe-
cuting: How can/will the scheduler gain control n
order to suspend the current task? (If a user-task is
currently executing, it also means that the scheduler
(or any other part of the OS) is currently not run-
ning, right?).

(25)

In order to come up with a good scheduling system,
you need to include as much knowledge as you can
get about your tasks. What do you know (or can you
extract) about the tasks in a standard desktop-oper-
ating system?

(26)

Why is Fixed Priority Scheduling often preferred
over Earliest Deadline First scheduling?

(27)

What is the difference between a utilization test and
a response time analysis?

6. Safety and Liveness

(28)

What is the rationale behind linear waiting?, i.e.
why isn’t the much easier FIFO scheme always used
instead?

(29)

Is there a deadlock-safe synchronization scheme?

(30)

Which of the deadlock conditions can you break
the easiest? – and in which kinds of environments?

(31)

How can you break/prevent the circular-wait dead-
lock condition?

(32)

What are the minimal requirements which need to
be fulfilled if you plan to apply deadlock avoid-
ance?

(33)

What does it mean that a system fails ‘uncon-
trolled’?

7. Architectures

(34)

What are the differences between a multi-tasking, a
multi-programming, and a multiprocessor system?

(35)

UNIX systems come in many different flavours and
architectures. Name some common features.

(36)

What are the drawbacks of a fork-style process cre-
ation? What are the advantages?

(37)

File-oriented interfaces are the standard in UNIX.
Give examples for forms of communication / data-
exchange where file-oriented interfaces are not ade-
quate.

(38)

Why are micro-kernel operating systems more sup-
portive for distribution (of the operating system it-
self) than most other of operating systems
architectures?

